Step of Proof: equiv_rel_functionality_wrt_iff
12,41
postcript
pdf
Inference at
*
1
1
1
I
of proof for Lemma
equiv
rel
functionality
wrt
iff
:
1.
T
: Type
2.
T'
: Type
3.
E
:
T
T
4.
E'
:
T'
T'
5.
T
=
T'
6.
x
,
y
:
T
.
E
(
x
,
y
)
E'
(
x
,
y
)
((
a
:
T
.
E'
(
a
,
a
)) & (
a
,
b
:
T
.
E'
(
a
,
b
)
E'
(
b
,
a
)) & (
a
,
b
,
c
:
T
.
E'
(
a
,
b
)
E'
(
b
,
c
)
E'
(
a
,
c
)))
((
a
:
T'
.
E'
(
a
,
a
))
& (
a
,
b
:
T'
.
E'
(
a
,
b
)
E'
(
b
,
a
))
& (
a
,
b
,
c
:
T'
.
E'
(
a
,
b
)
E'
(
b
,
c
)
E'
(
a
,
c
)))
latex
by AssertLemma `equiv_rel_iff` []
latex
1
:
1:
7. EquivRel(
;
A
,
B
.
A
B
)
1:
((
a
:
T
.
E'
(
a
,
a
))
1:
& (
a
,
b
:
T
.
E'
(
a
,
b
)
E'
(
b
,
a
))
1:
& (
a
,
b
,
c
:
T
.
E'
(
a
,
b
)
E'
(
b
,
c
)
E'
(
a
,
c
)))
1:
((
a
:
T'
.
E'
(
a
,
a
))
1:
& (
a
,
b
:
T'
.
E'
(
a
,
b
)
E'
(
b
,
a
))
1:
& (
a
,
b
,
c
:
T'
.
E'
(
a
,
b
)
E'
(
b
,
c
)
E'
(
a
,
c
)))
.
Lemmas
equiv
rel
iff
origin